Electronics Il Deadline: Thu 5.2.2026 14:00
exercise 2

Buzzers, interrupts and floats

Interrupts are time or input based functions, which can be used to execute snippets of code almost instantaneously
when a specific event happens.

Input interrupts keep watch on a specific pin for a specific event. When the event happens, the function related to
the interrupt runs, regardless of which point the main code (Loop() and setup()) is, as long as the interrupt has
been attached beforehand. After the interrupt is done, the main code will continue running from where it left off.

Using the delay () function is an easy way to delay the execution of code. However, using a delay stops all code from
executing, so the microcontroller will sit idle. Using a timer interrupt frees the microcontroller to execute other code
while waiting for a timer to expire. When the timer expires, the related interrupt function is completed immediately,
after which the main code is continued.

Interrupts function outside the main code with elevated priority, so it's best to keep the interrupt code itself very
simple by, e.g., setting a value and immediately exiting. Other interrupts, as well as mi11is() and delay() (which
use interrupts) don't work while an interrupt is executing, so they may run later than expected, return wrong values
or not run at all. Another thing of note is that interrupt functions can’t return values, so they must alter an existing
variable. Some microcontrollers have watchdogs (docs.espressif.com), which cause the microcontroller to reboot
whenever the interrupt occurs if it takes too long to execute.

Further reading: A more detailed description of how the processor actually handles interrupts (keskeytys) and the
privileged execution of code (etuoikeutettu suoritustila) can be found in Tietokoneen toiminnan peruskurssi 2.2
Kaskyjen nouto- ja suoritussykli and Tietokoneen toiminnan jatkokurssi 5.2 Tilarekisteri SR.

Task 1 — Tilt alarm (1p)

Use an active buzzer to make a one second beep when a tilt switch is tilted. Realize this by attaching the switch to
an interrupt. There should be a slight delay after the beep, so that it isn't continuous. Make the code such that the
interrupt is detached after a set number of beeps (e.g., 3).

More details in the Arduino language reference: attachlnterrupt(), detachinterrupt().

NB: The buzzer is a bit quiet when powered with the ESP32’'s 3.3V GPIO pins.

Task 2 — RGB LED (1p)

Make an RGB LED cycle through red, green, blue, yellow, magenta, and cyan. Use an interrupt attached to a timer
instead of the delay() function.

Consider operating the LED with port manipulation. Port manipulation is not required for this exercise but will be
useful later (Exercise 4, task 2).

Arduino Timer Interrupts (deepbluembedded.com), for ESP32 (deepbluembedded.com)

There are many ways to achieve the above functionalities but in tasks 1 and 2 we want you to familiarize
yourself with interrupts and timers. These enable faster response times and free up processor resources
in more demanding applications, such as your final project.

Page 1 of 2


https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/system/wdts.html
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachInterrupt/
https://www.arduino.cc/reference/en/language/functions/external-interrupts/detachInterrupt/
https://deepbluembedded.com/arduino-timer-interrupts/
https://deepbluembedded.com/esp32-timers-timer-interrupt-tutorial-arduino-ide/

Task 3 — Music pad (1+1p)
a) Use the passive buzzer to play Nokia tune or some other monophonic melody of your choice. RTTTL files can be
used, but other solutions can be used as well.

b) Add a keypad to the system so that you can use it to play tones. Make one of the keys play the melody.

Task 4 — Number representation (1+1p)

a) Do a bitwise not on a positive integer (int). What is the resulting number? What if you do the same for an
unsigned integer (unsigned int)? Explain how the microcontroller stores negative numbers on bit the level in a
comment.

Hint: Printing the integer in different formats may help. See Serial.printin() in the Arduino language reference.

b) Why doesn’t the following code work as one might expect? How would you make the comparison work with
floating point numbers? Modify the code so that it gives the expected result. Do not change the first line of code.

float £ = pow(sqrt(2),2);
Serial.println(f);

if(f == 2.0){

Serial.println("True");
Yelsed{

Serial.println("Why do we end up here?");
}

Hint: Language Reference or http://tito-perusteet-2022.mooc.fi/luku-3/2-kokonaisluvut-ja-liukuluvut.
An excellent floating point converter can be found here (h-schmidt.net).

Page 2 of 2


http://tito-perusteet-2022.mooc.fi/luku-3/2-kokonaisluvut-ja-liukuluvut
https://www.h-schmidt.net/FloatConverter/IEEE754.html

