
Photonics, Spring 2025
Submit your answers as a PDF file via Google Classroom before deadline (07.04.2025 at 10.00). If problems, contact the course assistant joonas.mustonen@helsinki.fi. 
If you utilize LLM models as assistance in solving the task, please specify their usage at the end of your submission. 

Exercise 9, 31.3.2025
This week’s exercises are a continuation of last week (Optoelectronics and Photonics: Chapter 3). A few fundamental concepts from last week relating to semiconductors are summarized here.
As a material is cooled, it’s electrons evidently lose energy. 0 K then serves as a useful reference to determine an important energy level. The Fermi energy is defined as the difference between the lowest occupied and the highest empty energy states at 0 K. An electron will become conductive i.e., free, once its energy is raised above the Fermi energy. In semiconductors an energy gap (bandgap ) exists between free conduction electrons (conduction band CB) and bound electrons (valence band VB). Semiconductors with a relatively large bandgap  are referred to as nondegenerate; the number of electrons in the CB is far less than those in the VB. In contrast, degenerate semiconductors are so heavily doped that they behave more like a metal than a semiconductor.
Two important statistical concepts describe free electrons within an energy band. The first is density of states (DOS) , which basically represents the number of possible (allowed) electron energy states at a particular energy level. The Fermi-Dirac function  is then the probability of finding an electron in a quantum state corresponding to the energy . Evidently at , . The product of the two functions  then essentially represents the energy distribution of electrons i.e., how many electrons are found per unit energy per unit volume at a given energy . The integral of this product then gives the electron concentration  in the energy range dictated by the integration limits. For nondegenerate semiconductors the Fermi-Dirac statistics can be reduced to Boltzmann statistics. For instance, the corresponding integral for electrons in the CB of a nondegenerate semiconductor gives the conduction electron concentration:



1. Extrinsic n-Si (2 points)
Extrinsic semiconductors are semiconductors that have been doped such that the concentrations of carriers of one polarity greatly outweigh that of the opposite polarity. Consider a Si crystal that has been doped n-type with  phosphorous donors. The electron drift mobility  depends on the total concentration of ionized dopants , as described in Table 1. 

Hint: Check “mass action law” and Table 3.1. in the course textbook. When , the conduction electron concentration will be nearly equal to . You can assume that doped Si is nondegenerate.

a) What is the conductivity  of the crystal?
b) Where is the Fermi level with respect to the intrinsic crystal ()?
Hint: Find expressions for the intrinsic/dopant concentrations separately as functions of their respective Fermi levels, then take their ratio.

2. Compensation doping in n-type Si (5 points)
Compensation doping refers to the doping of a semiconductor with both donors and acceptors, which can lead to the reversal of the doping type. Consider an n-type Si sample that has been doped with  phosphorous atoms per .
a) What are the electron and hole concentrations?
b) Calculate the room temperature conductivity of the sample.
c) Where is the Fermi level with respect to ?
d) If we now dope the crystal with an additional  boron acceptors per , what will be the conduction electron and hole concentrations?
e) Where is the Fermi level corresponding to (d), with respect to ?



	Dopant concentration ()
	
	
	
	
	
	

	GaAs,  ()
	8500
	-
	8000
	7000
	5000
	2400

	GaAs,  ()
	400
	-
	380
	310
	250
	160

	Si,  ()
	1450
	1420
	1370
	1200
	730
	280

	Si,  ()
	490
	485
	478
	444
	328
	157



Table 1: Drift mobilities of conductivity electrons and holes (, ) at various dopant concentrations.
