
Photonics, Spring 2025 
Submit your answers as a PDF file via Google Classroom before deadline (24.03.2025 at 10.00). If problems, 
contact the course assistant joonas.mustonen@helsinki.fi.  
If you utilize LLM models as assistance in solving the task, please specify their usage at the end of your 
submission.  

Exercise 7, 17.3.2025 

A rather lengthy discussion is provided here concerning dispersion. There is an important distinction to be made 
between dispersion due to material properties, and dispersion due to a wave-guide structure. 

As discussed in previous weeks, light sources always have a finite bandwidth Δ𝜆𝜆 i.e., they emit a range of 
frequencies. As a result, a light pulse will spread in space as it travels. Evidently this spread can also be considered 
as a temporal one Δ𝜏𝜏. Dispersion is often expressed as a spread per unit length: 

Δ𝜏𝜏
𝐿𝐿

= |𝐷𝐷𝑚𝑚|Δ𝜆𝜆 

where 𝐿𝐿 is the distance traveled, 𝐷𝐷𝑚𝑚  is the material dispersion coefficient. The dispersion coefficient is 
approximately given by the second derivative of the refractive index, and is evaluated at the center wavelength: 
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Wave-guide structures introduce dispersion that is distinct from material dispersion. Consider a wave reflecting 
back and forth from the walls of a planar waveguide, as we have done in previous weeks. The wave-vector of a 
certain propagating mode 𝑚𝑚 can be split into components parallel and perpendicular to the wave-guide, of 
which evidently the forward propagating mode is of interest: 𝛽𝛽𝑚𝑚 = 𝑘𝑘 sin 𝜃𝜃𝑚𝑚. The allowed incident (to the 
waveguide wall) angle 𝜃𝜃𝑚𝑚 is determined by the waveguide condition, which depends on both wavelength 
(frequency) and the waveguide properties (𝑛𝑛1,𝑛𝑛2,𝑑𝑑). Therefore, the wave-vector is also a function of both 
frequency and the properties of the wave-guide. Given the wave-guide properties,  𝜔𝜔 and 𝛽𝛽𝑚𝑚 can be calculated 
for each mode, producing a nonlinear relationship between 𝜔𝜔 and 𝛽𝛽𝑚𝑚, which can be plotted as a dispersion 
diagram (𝜔𝜔 vs. 𝛽𝛽𝑚𝑚): 

 

Recall then that group velocity 𝑣𝑣𝑔𝑔 = 𝑑𝑑𝜔𝜔/𝑑𝑑𝑘𝑘 indicates the velocity at which energy (information) travels, which 
for any given mode is the gradient of the dispersion curve. The group velocity therefore depends on both the 
frequency and the waveguide properties. This is an important result, which implies that even if the refractive 
indices 𝑛𝑛1,𝑛𝑛2 are wavelength-independent, the waveguide will introduce dispersion. This dispersion, similarly 
to material dispersion, is characterized by the waveguide dispersion coefficient: 

Δ𝜏𝜏
𝐿𝐿

= |𝐷𝐷𝑤𝑤|Δ𝜆𝜆 

1. Dispersion and bitrate (2 point) 
a)  



i) The dispersion (material + waveguide) of a short light pulse propagating in a fiber is characterized by the 
temporal broadened pulse width Δ𝜏𝜏 = Δ𝜏𝜏𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = Δ𝜏𝜏1/2. Estimate the maximum return to zero bitrate (0 
should be read between two successive 1’s) corresponding to Δ𝜏𝜏1/2.  
Hint: While any sensible estimate will do, the sought for answer is simple. Consider two pulses side by side; 
at what separation in terms of Δ𝜏𝜏1/2 is there a “sufficient” minimum between the two? 

ii) In Exercise 4, Problem 3 we calculated the temporal broadening of an optical pulse in a 1 km long pure 
silica fiber due to material dispersion: Δ𝜏𝜏1/2 = 1.68 ns. As a reminder, the solution was arrived at by 

deriving the group index 𝑁𝑁𝑔𝑔, approximating 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≈ Δ𝑑𝑑

Δ𝑑𝑑
 and noting that the propagation time 𝑡𝑡 = 𝐿𝐿/𝑣𝑣𝑔𝑔. 

Calculate then in this case the corresponding maximum bitrate limited by material dispersion. 
b) If the received light pulse intensity has a Gaussian shape, with a root-mean-square dispersion (temporal 

standard deviation) 𝜎𝜎, show that the maximum bitrate is: 

𝐵𝐵 ≈
0.25
𝜎𝜎

 

Hint: As in part a), make a justified estimate of how far the pulses should be spaced. The factor 0.25 should 
give you a pretty solid hint. 

2. Multimode fiber (5 point) 

A few weeks ago (Exercise 4) we discussed some characteristic quantities describing waveguides, namely 
numerical aperture 𝑁𝑁𝑁𝑁, and V-number. To recap, the numerical aperture NA is a dimensionless number 
characterizing the range of acceptance angles 𝛼𝛼 of an optical system: 

𝑁𝑁𝑁𝑁 = 𝑛𝑛0 sin𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑛𝑛12 − 𝑛𝑛22 

The V-number, or normalized frequency, is related to the (number of) propagating modes 𝑚𝑚. For a given 
wavelength the V-number depends on the waveguide geometry. For a step-index fiber, the V-number is 
straightforward to derive from the waveguide condition and applying the TIR condition (sin 𝜃𝜃𝑚𝑚 > sin 𝜃𝜃𝑐𝑐): 
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For single-mode fibers 𝑉𝑉𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 ≤ 2.405, above which the number of modes rises sharply. A good approximation 
for the number of modes in a step-index multimode fiber is given by: 

𝑀𝑀 ≈
𝑉𝑉𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛2
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Consider a multimode fiber operating at 𝜆𝜆 = 850 nm, with a core diameter of 100 µm, core refractive index of 
1.4750, and a cladding refractive index of 1.4550. Calculate: 

a) The V-number for the fiber and estimate the number of modes 
b) The wavelength beyond which the mode becomes single-mode (cut-off wavelength) 
c) Numerical aperture 
d) Maximum acceptance angle 
e) Modal dispersion per unit length Δ𝜏𝜏/𝐿𝐿 and hence the bitrate-distance product (𝐵𝐵 ∙ 𝐿𝐿). Assume a gaussian 

pulse. 
Hint: Consider the temporal separation of the slowest and fastest modes, then refer to the graph on the 
previous page. The (return-to-zero) bitrate is 𝐵𝐵 = 0.25/𝜎𝜎. The relationship between the modal dispersion 
Δ𝜏𝜏1/2, which is defined at the full-width-half-maximum intensity, and the standard deviation of a gaussian 
pulse is: 𝜎𝜎 ≈ 0.425 Δ𝜏𝜏1/2. 

3. Single mode fiber (5 points) 

Consider a fiber with a 86.5% SiO2 – 13.5% GeO2 core of diameter 8 µm and a refractive index of 1.468, and a 
cladding refractive index of 1.464. The core is operated with a laser source of 𝜆𝜆 = 1300 nm and a half-
maximum width of 2 nm. Calculate: 

a) The V-number for the fiber – is this a single mode fiber? 
b) The wavelength below which the fiber becomes multi-mode (cut-off wavelength) 
c) Numerical aperture 
d) Maximum acceptance angle 



e) The total (material and waveguide) dispersion and estimate the bitrate-distance product (𝐵𝐵 ∙ 𝐿𝐿).  
(𝐷𝐷𝑚𝑚 = −7.5 ps km−1 nm−1,𝐷𝐷𝑤𝑤 = −5 ps km−1 nm−1). 

 


