# Photonics, Spring 2025

Submit your answers as a PDF file via Google Classroom before deadline (17.03.2025 at 10.00). If problems, contact the course assistant joonas.mustonen@helsinki.fi.

If you utilize LLM models as assistance in solving the task, please specify their usage at the end of your submission.

# Exercise 6, 17.3.2025

### 1. Waveguide condition (2 points)

Two weeks ago (Exercise 4) we looked at optical fiber waveguides. Consider a single ray traveling along a waveguide undergoing total internal reflections at angle  $\theta_m$ . Evidently for a coherent wave to propagate along the waveguide, the wavefronts from successive total internal reflections must interfere constructively. We have also learnt that TIR imposes a dependent phase-shift on the reflected ray, which is dependent on the incident angle  $\theta_m$ .

Derive the waveguide condition for a slab waveguide (thickness d, refractive indices  $n_{core}$  and  $n_{cladding}$ , incident



angle with respect to the cladding is  $\theta_m$ , vacuum wavelength  $\lambda_0$ , and the phase change upon reflection is  $\phi_m$ ):

$$\frac{2\pi n_{core} d}{\lambda_0} \cos \theta_m - \phi_m = m\pi$$

**Hint**: Consider the ray propagating along ABC. At point C there are two contributions to a phase shift relative to A; one arising from the optical path difference (OPD), and the other from reflections. How much phase shift would an OPD of  $\lambda$  cause? How about then an arbitrary OPD (ABC)? Note that:  $\cos(2x) = 2\cos^2 x - 1$ .

# 2. Waveguide modes (2 points)

Consider a planar dielectric waveguide with a core thickness of 20  $\mu$ m,  $n_{core} = 1.455$ ,  $n_{cladding} = 1.440$ ,  $\lambda = 900$  nm. Recall that the expression for phase-shift  $\phi$  upon TIR, for a TE mode (s-polarized) is:

$$\tan\left(\frac{\phi_m}{2}\right) = \frac{\sqrt{\sin^2\theta_m - \left(\frac{n_{cladding}}{n_{core}}\right)^2}}{\cos\theta_m}$$

Numerically (graphically) compute the solution for  $\theta_m$  and plot the results.

**Hint**: Using the waveguide condition (from Exercise 1), you can express  $\phi_m$  as a function of  $\theta_m$  and m. The left and right side are then both functions of  $\theta_m$ . What do the intercepts of these functions correspond to? Note that the left function will be periodic, so solutions of odd and even values for m will overlap. The solutions for  $\theta_i$  will be between 80° and 90°.

#### 3. Waveguide mode shapes (4 points)

Let's continue the analysis from Exercise 1 to solve the actual electric field wavefunctions corresponding to different propagating modes. Consider now two identical parallel rays traveling in a waveguide.



- a) Show that the phase difference between rays 1 and 2 at C is  $\Delta \psi_m = \Delta \psi_m(y) = m\pi \frac{y}{a}(m\pi + \phi_m)$ . **Hint**: Use geometrical reasoning to derive  $\phi_m$  as a function of  $\theta_m$ , then use the waveguide condition to get rid of the explicit  $\theta_m$  dependence. You'll probably need the identity:  $\cos(2x) = 2\cos^2 x - 1$
- b) Derive the field variation at C as a function of y (and m, a,  $\phi_m$ ) i.e., the wavefunction of the interfering wave in the form  $E(y) = E_0 \cos(\omega t + \alpha)$ . Note that the solved amplitude  $E_0$  will be a cosine function arising from the geometry, however it has no time-dependence;  $E_0 = E_0(\psi(y))$ . Evidently also the phase shift  $\alpha = \alpha(\psi(y))$ . Note also there will be an arbitrary amplitude scaling factor.

**Hint**: Express the interfering waves as:  $E(y) = A\cos(\omega t) + A\cos(\omega t + \Delta \psi_m(y))$ . You'll probably need the following well-known trigonometric identity:  $\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ .

c) Plot the wave amplitude  $E_0(y)$  for the first three TE modes, given that  $a = 10 \text{ }\mu\text{m}$ ,  $\lambda = 1.3 \text{ }\mu\text{m}$ ,  $n_{core} = 1.455 \text{ and } n_{cladding} = 1.440$ .

**Hint**: You'll first have to express the phase difference  $\Delta \psi$  as in part a). Then find  $\theta_m$  using the phase difference formula and the waveguide condition, as in problem 2. Solve the phase differences  $\phi_m$  by substituting the solved  $\theta_m$  values into either equation. The solutions for  $\theta_m$  will be between 80° and 90°.

d) Optical detectors measure intensity profiles. As we saw in Exercise 1, intensity is proportional to the electric field amplitude  $I \propto E_0(y)^2$ . Plot the intensity profile of the solved electric field.