
Photonics, Spring 2025 
 
Submit your answers as a PDF file via Google Classroom before deadline (17.02.2025 at 10.00). If problems, 
contact the course assistant joonas.mustonen@helsinki.fi.  
If you utilize LLM models as assistance in solving the task, please specify their usage at the end of your 
submission.  
 

Exercise 5, 10.2.2025 

 

1. Bragg diffraction (1 point) 

Diffraction gratings can easily be understood by considering a periodic series of slits in an opaque screen (Fig. 1, 
left). When a plane wave is at normal incidence on the screen, the slits will result in diffracted beams at various 
angles. Only certain angles will produce constructive interference between beams from neighboring slits, 
corresponding to a path length difference of integer multiples of the wavelength. This relation is known as the 
grating equation, or the Bragg diffraction condition: 𝑑𝑑 sin𝜃𝜃 = 𝑚𝑚𝑚𝑚;   𝑚𝑚 ∈ ℤ. The value of 𝑚𝑚 dictates the 
diffraction order.  

Consider then a transmission grating where the angle of incidence is 𝜃𝜃𝑖𝑖  (Fig. 1, middle). Instead of slits, there are 
periodic scratches on a glass surface. From a straightforward geometric analysis the Bragg diffraction condition 
must then include the incidence angle:  

𝑑𝑑(sin𝜃𝜃𝑚𝑚 − sin𝜃𝜃𝑖𝑖) = 𝑚𝑚𝑚𝑚 

Note that although parallel beams are not drawn in the figure, it is from their interference that this condition 
arises. The treatment is the same for a reflection grating (Fig. 1, right), where the incident and reflected beams 
are on the same side of the grating. For both cases, the angles of incidence and reflection/refraction are defined 
to be positive. Note however, that diffractions can produce negative reflection/refraction angles, where the 
reflected/refracted beam is on the same side as the incident beam. 
Suppose that parallel grooves are etched on the surface of a semiconductor to act as a reflection grating and 

that the periodicity (separation) of the grooves is 1 µm. If light of wavelength 1.3 µm is incident at an angle 89° 
to the normal, find the diffracted beams (angles and modes). 

Hint: A complex reflection angle implies that an evanescent wave is present. Based on previous exercises, when 
do these appear? Does a complex angle produce a reflected beam? 
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Figure 1: Working principle of a diffraction grating. A plane wave is at normal incidence on periodic slits 
(left). An incident ray is diffracted at various angles through a transmission grating (middle), and from a 
reflection grating (right).  
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2. Diffraction grating for WDM (1 point) 

Let us now consider an application for a transmission diffraction grating. It would be beneficial to simultaneously 
send overlayed signals in an optical fiber, that could then be separated at the receiving end. The overlaying of 
signals could be done based on wavelength; each wavelength component carries its own unique information. 
By placing a suitable transmission diffraction grating at the receiving end of such a fiber, the wavelength 
components would separate spatially according to the Bragg diffraction condition (see Problem 1). These 
spatially separated beams could then be directed into separate detectors. Such a process is called wavelength 
division (de-)multiplexing (WDM). 

Suppose a WDM is used to separate superposed wavelength components. The diffraction grating has a 
periodicity of 2 µm, and the angle of incidence with respect to the normal of the grating is 0°. What is the angular 
separation of the two wavelength components at 1550 nm and 1540 nm? How could you increase this 
separation? 
 
3. Fabry-Perot optical cavity (4 points) 

A Fabry-Perot optical cavity or resonator is an optical device that can store radiation energy at certain 
frequencies. The cavity is formed between two perfectly aligned identical mirrors separated by a distance. When 
light is introduced into the cavity, the light undergoes a series of subsequent reflections at each mirror. Evidently 
for the waves to remain within the cavity, they must interfere constructively to form a standing wave. 
Considering that the mirror surface is metallic, the electric field at the surface must be zero, which implies that 
only integer multiples of half-wavelength can fit into the cavity. 

There are two important quantities that describe the performance of the cavity. Finesse is a unitless quantity 
that measures how narrow (in frequency) the resonant modes are with respect to their separation in frequency. 
A higher finesse implies that the modes are well separated, whereas a low finesse implies that the modes begin 
to overlap. This quantity is intrinsically related to the reflectance of the constituent mirrors; mirrors with 𝑅𝑅 < 1 
introduce some phase distortions, resulting in a broadened spectra of permissible frequencies about the central 
modes. In general Finesse is defined for interfering waves: 

𝐹𝐹 =
𝛿𝛿𝛿𝛿
𝛿𝛿

 

δ𝛿𝛿 is the spacing between modes, and 𝛿𝛿 is the mode spectral width. For optical cavities, Finesse can be written 
as a function of reflectance 𝑅𝑅: 

𝐹𝐹 =
𝜋𝜋√𝑅𝑅

1 − 𝑅𝑅
 

The other relevant quantity is quality factor 𝑄𝑄, which is a unitless quantity describing how fast the resonant 
modes diminish inside the cavity. The 𝑄𝑄-factor also indicates how selective the resonator is in frequency; the 
higher the 𝑄𝑄-factor, the narrower the spectral width of the resonant modes are. Naturally the 𝑄𝑄-factor is closely 
related to the Finesse, and is formally defined as: 

𝑄𝑄 =
𝛿𝛿𝑚𝑚
𝛿𝛿𝛿𝛿

= 𝑚𝑚𝐹𝐹 

𝛿𝛿𝑚𝑚 is the particular mode frequency and 𝑚𝑚 is the mode number. 

Consider a Fabry-Perot cavity designed to operate at 𝑚𝑚 = 632.8 nm, with a mirror separation of 50 cm, and a 
medium refractive index of 1. The mirror reflectances are 0.97 each. 

a) What is the nearest mode number that corresponds to a radiation of wavelength 632.8 nm? 
b) What is the actual wavelength of the mode closest to 632.8 nm? 
c) What is the mode separation in frequency? 
d) What are the Finesse F and Q-factors for the cavity? 

Hint: The Finesse is independent of frequency, while the Q-factor is not. For calculating the Q-factor, use 
the operating wavelength. 


