
Photonics, Spring 2025 

Submit your answers as a PDF file via Google Classroom before deadline (10.02.2025 at 10.00). If problems, 
contact the course assistant joonas.mustonen@helsinki.fi.  

If you utilize LLM models as assistance in solving the task, please specify their usage at the end of your 
submission.  

Exercise 4, 3.2.2025 

1. Optical fiber dimensions (3 points) 
Optical fibers act as waveguides, promoting the propagation of certain modes of EM radiation.  

Consider the simple case of two parallel waves incident on an optical fiber. For the propagating waves to not 

cancel out, constructive interference must occur; the two rays must remain in phase throughout reflections. 

The mathematical analysis of this condition results in the waveguide condition: 

[
2𝜋

𝜆
] 𝑑 cos 𝜃 − 𝜙(𝜃) = 𝑚𝜋    𝑚 ∈ ℤ 

This condition tells us that only certain reflection angles are permitted. For a certain wavelength, the waves 

corresponding to the permitted angles are referred to as wave modes. Evidently the upper limit of possible 

angles is imposed by the condition of TIR. With a sufficiently small fiber core diameter only the lowest mode 

(𝑚 = 0, 𝜃 ≈ 90°) will propagate. Such fibers are appropriately called single-mode fibers. 

There are a few important characteristic quantities describing an optical fiber. The numerical aperture NA is a 

dimensionless number characterizing the range of acceptance angles 𝛼 of an optical system: 

𝑁𝐴 = 𝑛0 sin 𝛼𝑚𝑎𝑥  

The refractive indices of the cladding and core must evidently differ for reflections to occur. The normalized 

index difference is then defined in terms of the cladding and fiber core: 

Δ =
𝑛𝑓 − 𝑛𝑐

𝑛𝑓

 

Finally, an important characteristic parameter is the V-number, which is related to the number of propagating 

modes. The parameter arises from the Maxwellian analysis of EM intensity fields in cylindrical waveguides, 

namely Bessel functions. It depicts a fundamental relationship between numerical aperture, operating vacuum 

wavelength, and the core diameter: 

𝑉𝑛𝑢𝑚𝑏𝑒𝑟 =
𝜋𝐷

𝜆0
𝑁𝐴, For single-mode fibers: 𝑉𝑛𝑢𝑚𝑏𝑒𝑟 ≤ 2.405 

A typical single mode fiber has a core diameter of 8 µm and a refractive index of 𝑛𝑓 = 1.46. The normalized 

index difference is 0.3%, and the cladding diameter 125 µm. Calculate the following: 

a) Numerical aperture.  

Hint: For rays of a certain angle 𝛼 to propagate in the fiber TIR must occur. What is the condition for TIR in 

terms of 𝜃? Using Snell’s law express NA as a function of 𝑛𝑐  and 𝑛𝑓. Note that:  
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b) Acceptance angle 𝛼𝑚𝑎𝑥  (assume 𝑛0 = 𝑛𝑎𝑖𝑟 ≈ 1). 

c) Cut-off wavelength. 
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2. Group index (2 points) 

The refractive index is defined as the ratio of vacuum speed of light and the phase velocity in the material. While 
in vacuum or air the group and phase velocities are equivalent, this is not necessarily the case in other media. 
Group velocity, which determines the speed of energy propagation, is defined as: 

𝑣𝑔 =
𝑑𝜔

𝑑𝑘
 

For a media where 𝑛 = 𝑛(𝜆), we can define an analogous group refractive index as the ratio of vacuum speed 
and group velocity: 

𝑁𝑔 =
𝑐

𝑣𝑔

 

The wavelength-dependent refractive index can be modeled using the Sellmeier equation: 

𝑛2 = 1 +
𝐴1𝜆2

𝜆2 − 𝜆1
2 +

𝐴2𝜆2

𝜆2 − 𝜆2
2 +

𝐴3𝜆2

𝜆2 − 𝜆3
2 + ⋯ 

For pure silica, the first three coefficients are: 

𝐴1 = 0.696749      𝐴2 = 0.408218     𝐴3 = 0.890815 

𝜆1 = 0.0690660 µm     𝜆1 = 0.115662 µm     𝜆1 = 9.900559 µm 

a) Find an expression for the group index 𝑁𝑔 in terms of 𝑛, 𝜆, 𝑑𝑛/𝑑𝜆.  

Hint: Express 𝑘, 𝜔 as functions of vacuum wavelength 𝜆0, then use the chain rule and the inverse 
function rule. Notice that since 𝑛(𝜆0), you will also need to apply the product rule. 

b) Calculate the group index 𝑁𝑔 and refractive index 𝑛 numerically from 500 nm to 1.8 µm. 

Hint: Use e.g. Python or MATLAB to solve the derivative in 𝑁𝑔, then plot 𝑛 and 𝑁𝑔 as functions of 

wavelength. 
 
 

3. Material dispersion (1 point) 

Calculate the temporal broadening of an optical pulse in a 1 km long pure silica fiber due to material dispersion 
for an LED operating at 850 nm (linewidth 20 nm). 

Hint: Based on the pervious exercise, what is the time of propagation of energy for the pulse? Can you express 
this as a function of 𝑁𝑔? How much does the time of propagation then change as a function of wavelength? You 

should get an expression with a second order derivative, which you can solve numerically with parameters from 
Exercise 2. Note that since the time spread and linewidth are much smaller than the propagation time and 

wavelength, we can approximate 
𝑑𝑡

𝑑𝜆
≈

Δ𝑡

Δ𝜆
.  



4. Attenuation & scattering (3 point) 

a) 1 mW of optical power enters a single mode fiber from one end. A photodetector at the opposite end of 

the fiber has a detection limit of 10 nW. Assuming that the signal is barely detected after 130 km of fiber, 

compute the attenuation coefficient (decibels / length). 

Hint: Power (and intensity) decays exponentially as a function of distance: 𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛 exp(−𝛼𝐿) . To 

convert attenuation to decibels per kilometer: 𝛼𝑑𝐵 =
10

ln 10
𝛼 . 

b) The irradiance of oscillating dipoles (as is the case in Rayleigh scattering) is proportional to 1/𝜆4. 

Attenuation in glass fiber due to Rayleigh scattering is approximately given by: 

𝛼𝑅 ≈
8𝜋3

3𝜆4
(𝑛2 − 1)2𝛽𝑇𝑘𝐵𝑇𝑓 

𝜆0 is the vacuum wavelength, 𝑛(𝜆) is the refractive index, 𝛽𝑇 is the isothermal compressibility (at 𝑇𝑓) and 

𝑘𝐵  is the Boltzmann coefficient. 𝑇𝑓  is the fictive, or glass transition temperature, at which a phase 

transition occurs during cooling from liquid to glass. As such, 𝑇𝑓  indicates the temperature below which 

density is approximately constant. 

i) Explain briefly how Rayleigh scattering attenuates the signal. 

ii) Calculate the Rayleigh attenuation coefficient 𝛼𝑅  for silica at 𝜆 = 1.55 µm (Check literature for 

coefficient values). The experimental values of attenuation around this wavelength are about 0.2 dB 

km-1. What can you conclude? 

 


