
Photonics, Spring 2025 

 

Submit your answers as a PDF file via Google Classroom before deadline (03.02.2025 at 10.00). If problems, 

contact the course assistant joonas.mustonen@helsinki.fi. 

If you utilize LLM models as assistance in solving the task, please specify their usage at the end of your 

submission. 

Exercise 3, 27.2.2025 

Nota bene – coherence length is a much more complicated physical concept than one would 
expect. Spend some time to understand the concept and do not hesitate to ask questions – we 
are here for you! 

1. Coherence lengths in terms of linewidth (2 points) 

All real light sources (including monochromatic) display a range of frequencies around the central frequency. 
The phenomenon arises from electron transitions that produce EM waves. Electron transmissions have a 
duration of the order of 10−8s to 10−9s, which manifests a spread in the frequencies produced. Also, due to the 
thermal motion of atoms, the frequency spread is further altered by the Doppler effect. Finally, atoms undergo 
collisions that inhibit wavetrains, further broadening the frequency distribution. Due to the spread of 
frequencies, propagating EM waves (from real light sources) have a finite distance (coherence length) after 
which the wave no longer behaves as a simple sinusoidal wave, and phase can no longer be predicted reliably. 
The frequency (wavelength) spread is known as the bandwidth Δ𝜈 (linewidth Δ𝜆0), defined as the full-width half-
maximum (FWHM) of the intensity spectrum. Just as waves can be described temporally (frequency) or spatially 
(wavelength), coherence can be described through analogous terms; temporal and spatial coherence. 

a) Consider a light source with a frequency bandwidth Δ𝜈 and center freqneucy 𝜆0. Derive expressions for the 
coherence length and the corresponding coherence time of a wave in terms of the linewidth Δ𝜆0. 

Hint: Since the linewidth and bandwidth are much smaller than the wavelength and frequency, the 

approximation can be made: 
Δ𝜈

Δ𝜆
≈ | 

𝜕𝜈

𝜕𝜆0
|. 

b) Estimate the coherence time and length of a white light in vacuum from the spectral width, given the usual 
limits 𝜆𝑈𝑉 ≤ 350 nm, λIR ≥ 750 nm. 

 

2. Coherence length of different light sources (2 points) 

Find the coherence length of the following light sources in vacuum. 
a) A LED emitting at 1550 nm with a spectral width of 150 nm, a semiconductor laser diode emitting at 1550 

nm with a spectral width of 3 nm, and a quantum well semiconductor laser diode emitting at 1550 nm with 
a spectral width of 0.1 nm. 

b) A multimode HeNe laser with a spectral frequency width of 1.5 GHz, and a specially designed single mode 
and stabilized HeNe laser with a spectral width of 100 MHz. 
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3. Interference fringes: Michelson interferometer example (3 points) 

The fringes that appear on the detector of a Michelson interferometer arise from the interference of split rays 
with differing optical path lengths (OPLs). Rays propagating from the source will diverge in space, occupying a 
larger surface area on the detector. Furthermore, rays will have optical path differences (OPDs) depending on 
how much they diverge form the optical axis. The detector contains a lens that converges parallel split rays to a 
single point on the detector. As a result, moving one of the mirrors will bring about an OPD between these 
parallel split rays giving rise to interference upon convergence. For the beam-splitter 𝑅 = 𝑇 = 0.5. 

a) Derive an expression for the half-width 𝜆 (full angular width at intensity half-maximum) of the fringes. 
Hint: For two interfering waves, the total intensity can be expressed as a sum of each component’s 

intensities and the intensity arising from interference. This is known as a coherence function: 

𝐼𝑡𝑜𝑡 =
1

𝜇0𝑐
〈𝑬𝒕𝒐𝒕 ∙ 𝑬𝒕𝒐𝒕〉 =

1

𝜇0𝑐
〈(𝑬𝟏 + 𝑬𝟐) ∙ (𝑬𝟏 + 𝑬𝟐)〉 =

1

𝜇0𝑐
(〈𝑬𝟏 ∙ 𝑬𝟏〉 + 〈𝑬𝟐 ∙ 𝑬𝟐〉 + 2〈𝑬𝟏 ∙ 𝑬𝟐〉) 

→ 𝐼𝑡𝑜𝑡 = 𝐼1 + 𝐼2 + 𝐼12 = 𝐼1 + 𝐼2 +
2

𝜇0𝑐
〈𝑬𝟏 ∙ 𝑬𝟐〉 

It is worth noting that the first two terms are DC components, and the third the interference 
component. Each wave is defined as 𝑬𝒏 = 𝑬𝒏𝟎 sin(𝜔𝑡 − 𝜙n), where 𝜔 is angular frequency and 𝜙 is 
the relative phase-shift. It is enough to evaluate the waves in 1D (parallel planewaves). What should be 
the integration limit, i.e., what is the period of the function sin 𝜔𝑡 ∗ sin(𝜔𝑡 + 𝑎)? You can check for 
instance on an online graphical calculator. 
 

b) What is the phase separation between adjacent maxima. 
Hint: This should be straightforward from (a). 
 

c) The relationship between mirror displacement 𝑑 and phase shift in the fringes 𝜙 allows for precise 
displacement measurements. As the mirror is displaced, the fringes appear move through space; by 
observing a stationary point on the interference pattern, the number of fringes passing that point over 
the duration of the displacement is related to the mirror displacement. How much does the mirror need 
to be displaced for the fringes to move by one period? 
Hint: Look at the ray-diagram and think about how the relative phases of the waves change as the 
mirror is moved. The answer is simple. 
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Fig 1: A) Schematic (left) and analogous ray diagram (right) of Michelson interferometer. Note that in the analogous diagram, 

the source is shifted above the optical axis of the detector to ease visualization. The OPL ≈ 2𝑑𝑐𝑜𝑠 𝜃. 



4. Coherence length: Michelson interferometer example (1 point) 

A Michelson interferometer is illuminated by red cadmium light with a mean wavelength of 643.837 nm and a 
linewidth of 0.0013 nm. The initial setting is for zero optical path difference (O.P.D.) i.e., d = 0. By how much 
must one of the mirrors be shifted for the fringes to disappear? How many wavelengths does this correspond 
to? 
 

Hint: An important distinction to understand the Michelson interferometer is related to the coherence length. 
For a single source, coherence length was defined (Exercise 1) as the distance after which dispersion has 
deformed the wave far from its original sinusoidal form. Although the wave is deformed, it comprises a well-
defined superposition of frequency components. Therefore, the observable interference of waves is not limited 
to distances below the coherence length. The limit of observable interference of two identical sources is rather 
limited by the separation of the sources; beyond a separation corresponding to the coherence length 𝑙𝑐, the two 
waves are no longer coherent i.e., their interference fringes disappear. In other words, at periodic distances 
(corresponding to a beat frequency) the different frequency components will again be in phase for the duration 
of the coherence length. 
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BONUS: Coherence function, continuation of problem 3 (2 points) 

Assume that the spectrum of the light source in problem 3 has a Gaussian shape. For two interfering waves, the 
total intensity can be expressed as a sum of each component’s intensities and the intensity arising from 
interference. This is known as a coherence function (as in Exercise 3): 

𝐼𝑡𝑜𝑡 =
1

𝜇0𝑐
〈𝑬𝒕𝒐𝒕 ∙ 𝑬𝒕𝒐𝒕〉 =

1

2𝜇0𝑐
〈(𝑬𝟏 + 𝑬𝟐) ∙ (𝑬𝟏 + 𝑬𝟐)〉 =

1

𝜇0𝑐
(〈𝑬𝟏〉 + 〈𝑬𝟏〉 + 2〈𝑬𝟏 ∙ 𝑬𝟐〉) 

→ 𝐼𝑡𝑜𝑡 = 𝐼1 + 𝐼2 + 𝐼12 = 𝐼1 + 𝐼2 +
2

𝜇0𝑐
〈𝑬𝟏 ∙ 𝑬𝟐〉 

Each wave is defined as 𝑬𝒏 = 𝑬𝒏𝟎 sin(𝜔𝑡 − 𝑘𝑛𝑥𝑛 − 𝜙n), where 𝜔 is angular frequency, 𝑘 is wavenumber, 𝑥 is 

position and 𝜙 is the relative phase-shift. The relative phase-shift between two waves of equal frequency can 

also be expressed as a function of their spatial separation:  

𝜙 =
2𝜋

𝜆0

(𝑥2 − 𝑥1) = 𝑘Δ𝑥 

Spatial separation in our case refers to the OPL difference of waves arriving at the detector. Show that you can 

express intensity 𝐼𝑛 as a function of wavenumber 𝑘𝑛. Derive the functional form of the fringe contrast 

(coherence function) as a function of the mirror position. The intended function can be left in integral form. 

Hint: Start by solving the coherence function of two waves, then express it as a function of 𝑘, Δ𝑥, 𝑡. For a 

Gaussian spectrum, all frequency components have non-zero intensities. Therefore, an integral over all 

frequency components (or rather all wavenumbers) will yield the coherence function. 

 


