Optics, Spring 2024

Submit your answers as a PDF file via Google Classroom before deadline (01.02.2024 at 10.00).

If problems, contact the course assistant joonas.mustonen@helsinki.fi.

Exercise 1

1. Complex number representation (2p.)

a) Show that multiplying a complex number $\mathrm{z}=\mathrm{x}+\mathrm{yi}$ by $\pm \mathrm{i}$ is perpendicular to z .
b) Two waves ψ_{1} and ψ_{2} with the same amplitude A, frequency $\omega / 2 \pi$ and speed ω / k are overlapping in some region of space:

$$
\begin{gathered}
\psi_{1}(x, t)=A \cos (k x+\omega t) \\
\psi_{2}(x, t)=A \cos (k x-\omega t+\pi)
\end{gathered}
$$

Show that the following equation is true and calculate the global maxima of the ψ :

$$
\psi(x, t)=\sum_{i=1}^{2} \psi_{i}(x, t)=-2 A \sin (k x) \sin (\omega t)
$$

2. Electromagnetic quantities (1p.)

Define the following quantities, and their units.
a) Electric field \mathbf{E}
b) Magnetic flux density \mathbf{B}
c) Electric charge density ρ
d) Current density \mathbf{J}
e) Permittivity ε
f) Permeability μ
g) Dielectric polarization density \mathbf{P}
h) Electric displacement field \mathbf{D}
i) Magnetic field strength \mathbf{H}
j) Magnetization vector field \mathbf{M}
k) Refractive index n

3. Linear electromagnetic wave equation (2p.)

Wave equations (describing the propagation of a certain quantity in time and space) are derived from the constitutive equations. In the case of electromagnetic waves, aforementioned quantities \mathbf{B} and \mathbf{E} are coupled together via the following Maxwell's equations. Depending on the assumptions and boundary conditions, the derived wave equations may differ.

$$
\begin{array}{cc}
\nabla \cdot \mathbf{D}=\rho & \nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial \mathrm{t}} & \nabla \times \mathbf{B}=\mu\left(\mathbf{J}+\frac{\partial \mathbf{D}}{\partial \mathrm{t}}\right) \\
\boldsymbol{D}=\epsilon \boldsymbol{E}+\boldsymbol{P} & \boldsymbol{B}=\mu(\boldsymbol{M}+\boldsymbol{H})
\end{array}
$$

a) Derive the linear free space wave equation for electric \mathbf{E} and magnetic \mathbf{B} fields from the Maxwell's equations.

Hint. Assumptions for the linear wave equation:
$\mathrm{J}=\rho=\mathrm{M}=\mathrm{P}=0$

This implies there is no charge, and all material parameters correspond to the vacuum conditions, including no polarization.
b) Show that the following plane wave expression \mathbf{E} is a solution to a wave equation, if the following velocity relation v is true:

$$
\boldsymbol{E}=E_{0} e^{i(k x-\omega t)} \widehat{\boldsymbol{x}} \quad v=\frac{c}{n}
$$

Hint.

$$
v=\frac{\omega}{k}
$$

4. Non-linear optics (3p.)

a) Derive the non-linear wave equation for EM waves.

Hint. Change the assumption that the polarization vector \mathbf{P} is zero and separate it as linear and nonlinear parts
$\mathrm{P}=\mathrm{P}^{\mathrm{L}}+\mathrm{P}^{\mathrm{NL}} \neq 0$
b) Describe situation, in which the aforementioned linear approximation is no longer valid, and nonlinear approximation is required to model the phenomenon.
c) Name two applications of non-linear optics and explain them briefly.

